Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx.
نویسندگان
چکیده
The endothelial glycocalyx is a dynamic extracellular matrix composed of cell surface proteoglycans, glycoproteins, and adsorbed serum proteins that has been implicated in the regulation and modulation of capillary tube hematocrit, permeability, and hemostasis. High tissue adenosine levels have been shown to adversely affect microvascular function and tissue survival after an ischemic episode, and previous work in this laboratory has shown that adenosine causes arteriolar constriction and degranulation of mast cells via the A3 receptor (A3AR). We hypothesized that adenosine exerts at least part of its effect through modification of the glycocalyx via the A3AR. We used an in vivo cremaster model (hamster and mouse) in which circulating plasma was labeled with a 70-kDa FITC-dextran, and the capillaries were examined before and after superfusion with varying concentrations of adenosine (or other vasoactive molecules). Measurements of the dextran exclusion from an endothelial cell surface layer and red cell separation from the endothelial cell surface were made for up to 30 minutes. Our data indicate that adenosine causes a rapid and profound decrease in the ability of the glycocalyx to exclude dextran but only affects red blood cell exclusion at pharmacological levels. Knockout mice deficient in the A3AR were completely protected from glycocalyx changes attributable to adenosine. These data show a potential link between a known vasoactive tissue metabolite, adenosine, and regulation of the glycocalyx, which may be important during (patho)physiological changes in microvascular function during inflammatory insults.
منابع مشابه
Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors.
Adenosine is released during tissue injury, ischemia and tumor growth, and promotes angiogenesis. Because mast cells accumulate in the proximity of new blood vessel development, we examined if they may contribute to adenosine-induced angiogenesis. We found that HMC-1 human mast cells express A2A, A2B, and A3 adenosine receptors. The adenosine agonist NECA (100 micromol/L) increased interleukin-...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملA1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes.
Adenosine is a proangiogenic purine nucleoside released from ischemic and hypoxic tissues. Of the 4 adenosine receptor (AR) subtypes (A1, A2A, A2B, and A3), the A2 and A3 have been previously linked to the modulation of angiogenesis. We used the chicken chorioallantoic membrane (CAM) model to determine whether A1 AR activation affects angiogenesis. We cloned and pharmacologically characterized ...
متن کاملAdenosine Receptor Activation Promotes Angiogenesis and Release of VEGF From Monocytes
Adenosine is a proangiogenic purine nucleoside released from ischemic and hypoxic tissues. Of the 4 adenosine receptor (AR) subtypes (A1, A2A, A2B, and A3), the A2 and A3 have been previously linked to the modulation of angiogenesis. We used the chicken chorioallantoic membrane (CAM) model to determine whether A1 AR activation affects angiogenesis. We cloned and pharmacologically characterized ...
متن کاملThe role of adenosine A3 receptors in cytotoxicity of the breast cancer cell lines
The nucleoside adenosine is present within cells and body fluids of all living organisms and its production, both intra- and extracellularly, is tightly coupled to energy consumption resulting in increased level of extracellular adenosine. The physiological effects of adenosine are mediated through four pharmacologically and biochemically distinct adenosine receptors (AR), i.e. A1, A2A, A2B and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 94 1 شماره
صفحات -
تاریخ انتشار 2004